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An original mathematical model for description of the combined flow of a viscous lubricating layer and
elastoplastic drawing deformation of a multilayer product has been developed. The theory of plastic flow
with linear anisotropic hardening has been used for description of the material’s behavior. The O. M. Be-
lotserkovskii approach has been applied to the determination of the pressure in the lubricating layer. The
problem of elastoplastic deformation of the product in the hydrodynamic-friction regime has been solved
using the model developed.

Introduction. The technology of deformation of products in the hydrodynamic-friction regime is widely used
in industry; it implies that the tool and the product deformed are separated by a thin lubricating layer. In particular,
bimetallic products from powder-copper-based dispersion-hardened composite materials are manufactured according to
this technology. It is expected that the above technology will be used in the production of superconducting cables.

The characteristics of the state of products in deformation in the hydrodynamic-friction regime are investigated
based on the methods of the mechanics of a deformable rigid body and on hydrodynamics methods. The problems of
analysis of the elastoplastic deformation of metals have been considered in [1–10]. The methods of solution of Navier–
Stokes equations have been studied in [11–14]. The problems of stability of flow of a thin lubricating layer in plastic
metal working have been investigated in [15–18].

Different models [7, 19–26] have been developed for correct description of the deformation in the hydrody-
namic-friction regime. However, in these models, the problem is subdivided into two independent ones: the problem of
deformation of a product and that of flow of a lubricating layer. Therefore, it is of scientific and practical interest to
construct a mathematic model free of the above drawback.

Formulation of the Problem. The method of hydrodynamic injection of a lubricant [7, 22] involves the pro-
duction of a high pressure in it due to the hydrodynamic effect appearing in friction of the lubricant against a moving
bar (Fig. 1). Lubricant 4, which is the free state in vessel 3, is captured by a moving bar 1 and is entrained in mi-
crogap 2 between the head tube and the bar. As a result the pressure of the lubricant near the deformation zone in-
creases to a value ensuring its injection into the contact region.

It is assumed that the deformation of the bar is nonstationary, nonisothermal, and axisymmetric; the plastic-
deformation energy completely dissipates to heat; the lubricant is thought to be viscous and incompressible; the bar
consists of isotropic materials differing in properties and with the initially known boundary. The theory of plastic flow
with linear anisotropic hardening is applied to the description of the behavior of the materials.

Let the multilayer product and the lubricating layer occupy, at a certain instant of time t 2 [0, t1], a bounded
region Ω = Ωep

1  2 Ωep
2  2 Ωliq ½ R3 with boundary Γ and boundaries of the materials Γc

1 between the layers Ωep
1  and

Ωep
2  of the product and Γc

2 between Ωep
1  and the lubricating layer Ωliq. The closure of the region Ωliq with boundary

Γliq is determined as Ω
__

liq = Ωliq 2 Γliq. We denote the region of elastoplastic deformation with boundary Γep, Ω
__

ep =
Ωep 2 Γep, by Ωep = Ωep

1  2 Ωep
2 .

The stressed-deformed state of the multilayer product and flow of the lubricant are described by the general
system of the equations of motion
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ρ 
dv
dt

 = ∇∇⋅σ + ρF ,   x 2 Ω ,   t 2 [0, t1] , (1)

heat conduction

d (ρcT)
dt

 = ∇∇⋅(χ∇∇T) + W ,   x 2 Ω ,   t 2 [0, t1] , (2)

W = 










σiε
.
i
p
 ,

η (∇∇v + (∇∇v)t) ∇∇v ,
     

x 2 Ωep ,

x 2 Ωliq ,

(3)

and continuity

∇∇⋅(ρv) = 0 ,  x 2 Ωliq , (4)

by the dependence of the displacement u on the velocity v

du
dt

 = v ,   x 2 Ωep ,   t 2 [0, t1] ,
(5)

by the physical and geometric relations

dσ = fσ (dε, dT) ,   dε = 
1
2

 ∇∇v + (∇∇v)t
 dt ,   x 2 Ω

__
ep ,

(6)

σ = fσ (ε
.
) ,   ε

.
 = 

1
2

 ∇∇v + (∇∇v)t
 ,   x 2 Ω

__
liq ,

(7)

by the initial conditions (t = 0)

v = v0 ,   T = T0 ,   x 2 Ω
__

 , (8)

u = u0 ,   ε = ε0 ,   σ = σ0 ,   x 2 Ω
__

ep , (9)

P = P0 ,   x 2 Ω
__

liq , (10)

by the boundary force

Fig. 1. Diagram of elastoplastic deformation with the hydrodynamic injection
of a lubricant.
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σ⋅n = FΓ ,   x 2 ΓF , (11)

kinematic

v = vΓ ,   x 2 Γv , (12)

and thermal conditions

T = TΓ ,   x 2 ΓT , (13)

χ∇∇T⋅n = − α (T − TΓ) + 
Wτ
2

 ,   x 2 Γh.f , (14)

Wτ = 











Fτ⋅v ,   x 2 Γτ ,

0 ;         x 2/  Γτ ,

and by the conditions at the boundaries of the materials

v
1
 = v

2
 ,   F

1
 + F

2
 = 0 ,   χ1∇∇T

1⋅n1
 + χ2∇∇T

2⋅n2
 = 0 ,   T

1
 = T

2
 ,   x 2 Γc .

(15)

It is necessary to find the functions v(x, t), T(x, t), u(x, t), ε(x, t), σ(x, t), and P(x, t) satisfying system (1)–
(15) and to determine the contact and free boundaries and the boundaries of the materials.

Resolving Relations. According to [3, 27], the relationship between the increments in the stress and deforma-
tion tensors for the elastoplastic material is taken in the form

dσ = D⋅⋅dε + RdT . (16)

For the lubricant, the dependence of the stress tensor on the velocity vector has the form [13]

σ = − δP + η ∇∇v + (∇∇v)t
 . (17)

In constructing resolving relations, we use the Galerkin method with a finite-element approximation of the solution. A
set of trial vector functions Φi, i = 1, 2, ..., is constructed based on a complete and closed system of scalar functions
ϕi, i = 1, 2, ..., in the form

ΦΦ1 = �ϕ1, 0, 0� ,   ΦΦ2 = �0, ϕ1, 0� ,   ΦΦ3 = �0, 0, ϕ1� ,   ΦΦ4 = �ϕ2, 0, 0� ,   ΦΦ5 = �0, ϕ2, 0� , ... (18)

The set of vector functions (18) forms a complete and closed system. We assume that the scalar product is (Y, ΦΦk) =

∫
Ω

Y⋅ΦΦkdΩ = 0 for all k = 1, 2, ..., and Y = Y(y1, y2, y3). We show that this is possible only when Y = 0. We have

(Y, Φ1) = ∫ 
Ω

Y⋅Φ1dΩ = ∫ 
Ω

y1Φ1
1
 + y2Φ1

2
 + y3Φ1

3
dΩ = ∫ 

Ω

y1ϕ1dΩ

for k = 1,

(Y, Φ2) = ∫ 
Ω

Y⋅ΦΦ2dΩ = ∫ 
Ω

y2ϕ1dΩ
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for k = 2,

(Y, Φ3) = ∫ 
Ω

Y⋅ΦΦ3dΩ = ∫ 
Ω

y3ϕ1dΩ

for k = 3,

(Y, Φ4) = ∫ 
Ω

Y⋅ΦΦ4dΩ = ∫ 
Ω

y1ϕ2dΩ

for k = 4, and

(Y, Φ5) = ∫ 
Ω

Y⋅ΦΦ5dΩ = ∫ 
Ω

y2ϕ2dΩ

for k = 5. Generalizing the resulting expressions, we write three expressions which enable us to determine the scalar
product for any k:

(Y, ΦΦk) = ∫ 
Ω

Y⋅ΦΦkdΩ = ∫ 
Ω

y1Φk
1
dΩ = ∫ 

Ω

y1ϕk+2
3

dΩ ,   k = 1, 4, 7, ... , (19)

(Y, ΦΦk) = ∫ 
Ω

Y⋅ΦΦkdΩ = ∫ 
Ω

y2Φk
2
dΩ = ∫ 

Ω

y2ϕk+1
3

dΩ ,   k = 2, 5, 8, ... , (20)

(Y, ΦΦk) = ∫ 
Ω

Y⋅ΦΦkdΩ = ∫ 
Ω

y3Φk
3
dΩ = ∫ 

Ω

y3ϕk
3

dΩ ,   k = 3, 6, 9, ... . (21)

By virtue of the completeness of the functions ϕi, k = 1, 2, ..., expressions (19)–(21) vanish when y1 = 0, y2 = 0, and
y3 = 0, i.e., Y = 0. Consequently, the set of vector functions (18) forms a complete system.

In view of the closeness of the system of functions ϕk, k = 1, 2, ..., there exist expansion coefficients a3k−2,
a3k−1, and a3k, k = 1, 2, ..., such that the inequalities















y1 − ∑ 

k=1

∞

a3k−2ϕk















 ≤ ξ ,   














y2 − ∑ 

k=1

∞

a3k−1ϕk















 ≤ ξ ,   














y3 − ∑ 

k=1

∞

a3kϕk















 ≤ ξ (22)

hold. Based on (22), we perform the evaluation















Y − ∑ 

k=1

∞

akΦΦk















2

 = 














y1 − ∑ 

k=1

∞

akΦk
1














2

 + 














y2 − ∑ 

k=1

∞

akΦk
2














2

  + 














y3 − ∑ 

k=1

∞

akΦk
3














2

 

= 














y1 − ∑ 

k=1

∞

a3k−2ϕk















2

 + 














y2 − ∑ 

k=1

∞

a3k−1ϕk















2

 + 














y3 − ∑ 

k=1

∞

a3kϕk















2

 ≤ ξ2
 + ξ2

 + ξ2
 .

Consequently, we obtain
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













Y − ∑ 

k=1

∞

akΦΦk















 ≤ √3  ξ , (23)

i.e., the set of vector functions (18) forms a closed system.
For the elastoplastic material, the equations of motion (1), with account for the physical and geometric rela-

tions for the finite element numbered k, are written in the form of the system of equations

− ∑ 

i=1

m

 ∫ 
Ωep

 [Bk] [D
ep

] [Bi]
t
 + ρ [ϕk] (�ϕi� ∇∇) v

n−1
 dΩ �vi

n
�  ∫ 

Ωep

 [Bk] pRq dT
 dΩ

− ∑ 

i=1

m

 ∫ 
Ωep

 ρ [ϕk] �ϕi� dΩ 
∂ �vi

n
�

∂t
 = −  ∫ 

Γep

 [ϕk] pFq dΓ , (24)

where vn−1 is the velocity value determined on the previous time step and vn is the sought velocity. For the region
with a lubricant, the equations of motion (1), with account for (17), are transformed as

− ∑ 

i=1

m

 ∫ 
Ωliq

 [Bk] [D
liq

] [Bi]
t
 + ρ [ϕk] (�ϕi� ∇∇) v

n−1
 dΩ �vi

n−1 ⁄ 2� −  ∫ 
Ωliq

 [Bk] P pδq dΩ

− ∑ 

i=1

m

 ∫ 
Ωliq

 ρ [ϕk] �ϕi� dΩ 
∂ �vi

n−1 ⁄ 2�
∂t

 = −  ∫ 
Γliq

 [ϕk] pFq dΓ , (25)

where vn−1 ⁄ 2 is the sought intermediate velocity whose value is to be subsequently refined. The form of the matrices
of velocity gradients [B] and physical properties [Dep] and [Dliq] has been given in [28]. To refine the velocity field
and to determine pressure in the liquid lubricant we use the O. M. Belotserkovskii approach [11], according to which
we introduce the additional pressure δP determined as the solution of the differential equation

∆ (δP) = 
ρ
τ

 ∇⋅vn−1 ⁄ 2 ,   x 2 Ωliq .

The distribution δP found enables us to refine the pressure field

P
n
 = P

n−1
 + δP ,   x 2 Ωliq ,

and the components of the velocity vector

v
n
 = v

n−1 ⁄ 2 − 
τ
ρ

 ∇ (δP) ,   x 2 Ωliq ,

satisfying the continuity equation in this case. The resolving relation for determination of a correction to pressure for
the finite element numbered k is written in the form

  ∑ 

i=1

m

 ∫ 
Ωliq

 ∇∇ϕi⋅∇∇ϕkdΩ (δPi) = ∑ 

i=1

m

 ∫ 
Γliq

 (∇ϕi⋅n) ϕkdΓ (δPi) − ∫ 
Ωliq

 
ρ
τ

 ∇v
n−1 ⁄ 2ϕkdΩ . (26)

The resolving relation for determination of temperature for the finite element numbered k has the form
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  ∑ 

i=1

m

 ∫ 
Ω

ρcϕiϕkdΩ 
∂Ti

∂t
 + ∑ 

i=1

m

 ∫ 
Ω


ρc (vn⋅∇∇ϕi) ϕk + χ∇∇ϕi⋅∇∇ϕk


 dΩTi

+  ∑ 

i=1

m

 ∫ 
Γ

αϕiϕkdΓTi = ∫ 
Γ

αTΓϕk + 
Wτ
2

 ϕkdΓ + ∫ 
Ω

WϕkdΩ . (27)

Equations (24), (25), and (27) are nonstationary. To solve them we use the Crank–Nicolson difference scheme
[29], according to which we employ, for determination of the unknown function ω from a nonstationary equation of
the parabolic type,

∂ω
∂t

 + Aω = f
(28)

with the initial condition

ω (0) = g (29)

the corresponding difference equation

ωn
 − ωn−1

τ
 + Λn−1

 
ωn

 + ωn−1

2
 = f

 n−1
 ,   ω0

 = g , (30)

where Λn−1 = 
1
2

(An + An−1) and f (n−1) = f(tn−1 ⁄ 2). The employment of the difference scheme has enabled us to pass

from the initially nonlinear problem to a linearized one.
Algorithm of Solution. For simultaneous solution of problem (5)–(7) and (24)–(27) with boundary conditions

(8)–(15) we use the following numerical algorithm. Let the stressed-deformed state of the material be known for an
arbitrary instant of time t. Then the components of the velocity vector v for tn−1 + ∆t are determined for the entire re-
gion under study, when the resolving relations (24) and (25) are simultaneously used. The increments of the displace-
ment-vector components and the deformation and stress tensors in the metal are determined from the known velocity
field (5)–(7); from Eq. (26), the increment in the pressure δP is found for the liquid and the components of the ve-
locity and pressure fields are corrected; the strength of internal heat sources is computed. The field of temperature T
is calculated from relation (27) with allowance for the surface and internal heat sources. Next, elastic and plastic zones
are determined for the metal. The algorithm of separation has been given in [28]. This enables us to determine the
components of the tensors D and R for the next step of calculations. From the increment in the displacement vector u
found, we compute the position of the product’s boundaries in space and refine new free and contact boundaries and
the boundaries of the materials. To determine the boundary with friction we compute the elements on the generatrix
of the tool. Then we pass to the next computational step. This continues until the required instant of time is reached.
Thus, the algorithm enables us to track the evolution of the stressed-deformed state of the product and the velocity and
pressure fields in the lubricating layer.

Verification. The mathematical model has been verified on the following problems: determination of the
stressed-deformed state of a long cylinder under thermoelastic and plastic deformation (the maximum error between the
numerical and exact solutions [30, 31] amounted to 1.88% in elastic deformation, to 0.21% in thermoelastic deforma-
tion, and to 6.28% in plastic deformation) and determination of the velocity and pressure vector in the case of flow
of a liquid in a cylindrical channel (the maximum error between the numerical and exact solutions [13] amounted to
1.84%). The use of the quadratic functions

ψi = ϕi (2ϕi − 1) ,   ψj = ϕj (2ϕj − 1) ,   ψk = ϕk (2ϕk − 1) ,

ψl = 4ϕiϕj ,   ψm = 4ϕkϕk ,   ψn = 4ϕkϕi ,
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constructed based on the functions of first order

ϕi (r, z) = αi + βiz + γir ,   ϕj (r, z) = αj + βjz + γjr ,   ϕk (r, z) = αk + βkz + γkr ,

in approximation of the pressure enables us to obtain a more exact solution of the problem on the compound motion
of a liquid. The exactness ω and convergence of the solution of the continuity equation as a function of the order of
approximation and the number of finite elements m is plotted in Fig. 2. As a measure of error of the solution of the
continuity equation, we use the integral norm

 ∇∇⋅v  = √1
S

 ∫ 
Ωliq

(∇⋅v)2
dΩ  ,

where S = ∫ 
Ωliq

dΩ. For the exact solution, we have ∇⋅v = 0.

To evaluate the applicability of plastic-flow theory we have investigated the problem of determination of
the stressed-deformed state of a bar under deformation in the mixed-friction regime without allowance for the lubri-
cating layer; we constructed, at different instants of time, the trajectories of deformation of material particles in the
A. A. Il’yushin space

e1 = err √3
2

 ,   e2 = √2  




1
2

 err + eϕϕ



 ,   e3 = erϕ √2  ,   e4 = eϕz √2 ,   e5 = ezr √2

and checked the fulfillment of the inequality

ζ < κ−1
 .

The deformation trajectories satisfy the relations of small curvature (Fig. 3).
Results. Using the mathematical model developed, we solve the joint problem of flow of a lubricating layer

and deformation of a product in the hydrodynamic-friction regime (Fig. 4).

Fig. 2. Convergence of the solution of the continuity equation: 1) linear trial
functions; 2) quadratic trial functions.

Fig. 3. Projections of the deformation trajectories onto the plane e1, e2 (a) and
e3, e2 (b).
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The practice of deformation in the hydrodynamic-friction regime involves the use of pressure head tubes pro-
ducing the high pressure of a lubricant in the deformation zone. The hydrodynamic-friction friction regime is attained
owing to the effect of injection of the lubricant into the gap between the billet’s surface and the pressure head tube
by a moving product. The dependence of the pressure on the length of the heat tube L and the thickness of the lubri-
cant layer h has been investigated in [28]. The solutions were obtained numerically and analytically. The Barus law
was used in numerical calculations for description of the pressure dependence of the lubricant viscosity. Figure 5
shows the parameters of the head tube that ensure a high pressure in the lubricant before the entry into the deforma-
tion zone.

It is taken that the axial component v1 of the vector of velocity v of motion of the bar at exit from the draw-
ing die is equal to 5 m ⁄ sec, the radial component is absent, the die half-angle is θ = 6o, and the drawing coefficient
is λ = 1.2. The initial radius is equal to 2.94 mm, the length of the head tube is 30 mm, and the thickness of the
lubricant layer in the gap is h = 0.05 mm. We take MS-20 mineral oil as the lubricant.

In the problem, we adopt the following initial and boundary conditions (Fig. 4):

u = u0 ,   ε = ε0 ,   σ = σ0 ,   v = v0 ,   T = T0 ,   P = P0 ,   FτAGWGB = 0 ,   FnAGWGB = 0 ,

TAGWGB = T1 ,   vrBC = 0 ,   vzBC = 0 ,   χ∇∇TBC⋅n = − α (TBC − TΓ) ,   vrCD = 0 ,   vzCD = 0 ,

χ∇TCD⋅n = − α (TCD − TΓ) ,   vrDE = 0 ,   vzDE = 0 ,   χ∇∇TDE⋅n = − α (TDE − TΓ) ,

∂vr

∂n



EH

 = 0 ,   
∂vz

∂n



EH

 = 0 ,   χ∇∇TEH⋅n = 0 ,   FτHF = 0 ,   vzHF = v1 ,   χ∇∇THF⋅n = 0 ,

FτFA = 0 ,   vrFA = 0 ,   χ∇∇TFA⋅n = 0 ,   δPGB = 0 ,

Fig. 4. Deformation of the product in the hydrodynamic-friction regime.

Fig. 5. Distribution of pressure P in the lubricating layer vs. length of the
head tube L and thickness of the lubricant layer h: 1 and 2) numerical and
analytical solutions for h = 0.05 mm; 3 and 4) numerical and analytical solu-
tions for h = 0.1 mm. P, mPa; L, mm.
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∂δP

∂n



BC

 = 
∂δP
∂n



CD

 = 
∂δP

∂n



DE

 = 
∂δP

∂n



EH

 = 
∂δP

∂n



GH

 = 0 .

Conditions at the boundary between the metal and the lubricating layer are specified in the form

v
1
GH = v

2
GH ,   Fτ

1
GH + Fτ

2
GH = 0 ,   Fn

1
GH + Fn

2
GH = 0 ,   T

1
GH = T

2
GH ,

χ1∇∇T
1⋅nGH + χ2∇∇T

2⋅nGH = 0 .

Heating in the lubricating layer is by viscous-friction forces (Fig. 6a). The product’s surface is heated owing
to contact heat exchange and plastic-deformation energy. Certain experimental data on the temperatures of the product’s
contact layer under deformation in the hydrodynamic-friction regime are indicated in [7]. In particular, in the drawing
of a wire with an initial radius of 2.68 mm, a drawing coefficient λ = 1.16, and an axial component of the velocity
vector v1 = 4.75 m ⁄ sec, the heating of the product’s surface attains 180oC. The contact-layer temperature obtained with
the constructed model is 160 to 176oC, i.e., the deviation from the experimental value does not exceed 11%.

The distribution of the velocity vector and the isolines of its components (Fig. 6b–d) point to the fact that
flow resembling Couette flow appears in the lubricating layer. As a rule, it is formed in channels with one moving
boundary.

Fig. 6. Characteristics of deformation of the product in the hydrodynamic-fric-
tion regime for the distribution of the: a) temperature T, b) velocity in the lu-
bricating layer v, c) radial velocity vr, and axial velocity vz. r and z, m.
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The geometry of the channel influences the appearance of radial velocity-vector components (Fig. 6c). The
high pressure in the lubricant contributes to the deformation of the metal and to the change in the product’s shape and
in the profile of the gap between the tool and the product.

Conclusions. We have mathematically formulated the joint nonstationary nonisothermal axisymmetric bound-
ary-value problem of flow of a lubricating layer and deformation of a multilayer product. Using the Galerkin method
we have constructed the resolving relations for partial differential equations describing the deformation of the multi-
layer product and flow of the lubricating layer. The mathematical model has been verified on problems of the mechan-
ics of a deformable rigid body and fluid mechanics. The results obtained demonstrate the possibility of solving the
joint problem of flow of a lubricating layer and elastoplastic deformation of a metallic product and applying the con-
structed mathematical model to the investigation of the influence of different factors (velocity, geometry of the tool,
types of materials and lubricants) on the process in question.

NOTATION

ak, expansion factors; A, certain operator; B, velocity-gradient matrix, 1 ⁄ sec; c, specific heat, J ⁄ (kg⋅deg); D,
tensor of elastoplastic properties [3]; Dep, matrix of elastoplastic properties in the region Ωep; Dliq, matrix of elasto-
plastic properties in the region Ωliq; eij, components of the deviator of the deformation tensor; f, right-hand side of an
equation of the parabolic type; fσ, function prescribing physical relations between the tensors of stresses and deforma-
tions or deformation rate depending on the type of region; F, vector of external forces, N; Fτ, vector of friction force
at the boundary, N; FΓ, boundary value of the external-force vector, N; g, initial value of the function ω; h, thickness
of the lubricant layer in the gap, mm; L, length of the head tube, mm; m, number of simplexes; n, unit vector of the
external normal; P, pressure, Pa; P0, initial value of pressure, Pa; δP, additional pressure Pa [11]; r, radial coordinate;
R, tensor of temperature properties [3]; S, volume of the region with a lubricant; t, time, sec; t1, time of completion
of deformation, sec; T, temperature, oC; T0, initial value of temperature, oC; T1, fixed value of temperature, oC; TΓ,
boundary value of temperature, oC; u, displacement vector, m; u0, initial value of the displacement vector, m; v, ve-
locity vector, m ⁄ sec; v0, initial value of the velocity vector, m ⁄ sec; vΓ, boundary value of the velocity vector,
m ⁄ sec; w, error; W, strength of integral heat sources, W; Wτ, friction power at the boundary, W; Y(y1, y2, y3), auxil-
iary vector; z, axial coordinate; e1,2,3,4,5, elements of the basis vector in the Il’yushin space; α, thermal expansion co-
efficient, 1 ⁄ deg; αi, βi, and γi, expansion factors; δ, Kronecker symbol; ε, deformation tensor; ε

.
, deformation-rate

tensor, 1 ⁄ sec; ε
.p, intensity of the plastic-deformation rate, 1 ⁄ sec; ε0, initial value of the deformation tensor; ζ, radius

of curvature of the deformation trajectory; η, coefficient of kinematic viscosity, kg ⁄ (m⋅sec); θ, die half-angle, deg; κ,
lag trace; λ, drawing coefficient; Λ, difference operator corresponding to the operator A; ξ, small quantity; ρ, density,
kg ⁄ m3; σ, stress tensor, Pa; σi, stress intensity, Pa; σ0, initial value of the stress tensor, Pa; τ, artificial time, sec [11];
ϕi, scalar functions forming the complete and closed system; Φi, set of trial vector functions; χ, thermal conductivity,
W ⁄ (m⋅deg); ψi, scalar functions forming the complete and closed system; ω, certain unknown function of one argu-
ment. Subscripts and superscripts: c, contact; ep, elastoplastic; i, intensity; i, j, and k, superscripts taking on successive
values; liq, liquid; n, normal, r, radial; h.f, heat flux; τ, friction; ϕ, circular, circumferential; 0, initial; p, plastic; t,
transposed.
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